

MULTIMODAL TREATMENT

DR. GIOVANNI TOMASICCHIO

CHIRURGIA BARIATRICA E METABOLICA

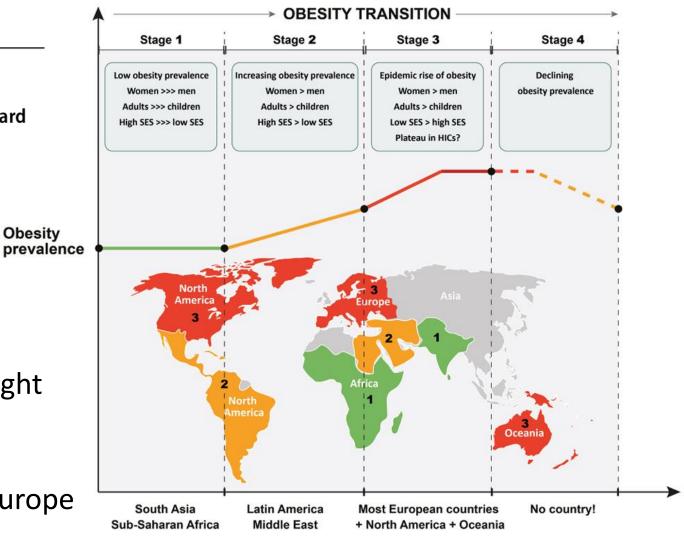
AZIENDA OSPEDALIERO UNIVERSITARIA POLICLINICO, UNIVERSITY OF BARI

PHD CANDIDATE IN ORGANS AND TISSUES TRANSPLANTATION AND CELLULAR THERAPIES, DIMEPRE-J, UNIVERSITY OF BARI "ALDO MORO" Current Obesity Reports (2023) 12:514-527 https://doi.org/10.1007/s13679-023-00527-y

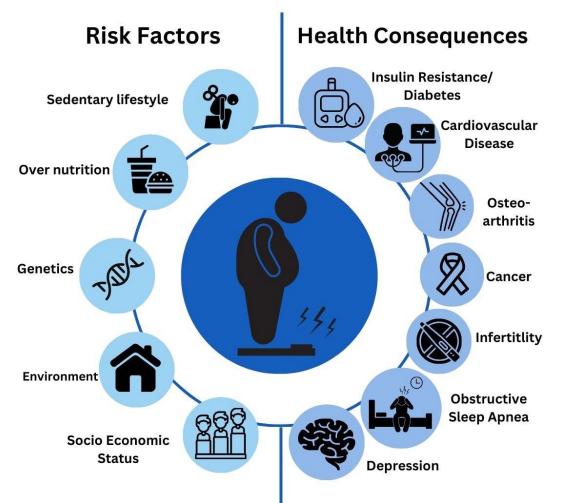
REVIEW

Update on the Obesity Epidemic: After the Sudden Rise, Is the Upward **Trajectory Beginning to Flatten?**

Obesity


Chrysi Koliaki¹ · Maria Dalamaga² · Stavros Liatis¹

Obesity is global health priority, rising prevalence:


- tripled since 1975
- > 2/3 of the US population are over-weight
- 23% of adults in the Europe
- Overweight + obesity \rightarrow 60% adults in Europe

5.1.0.08

PALAZZO DEL CASINÒ/HDO DI VENEZIA

Economic development

Pathogenesis of obesity :

- genetic,
- epigenetic,
- developmental and environmental factors,
- increased energy consumption,
- reduced physical activity (not only)

Bariatric surgery is still the most effective treatment option reduce body weight,

- decrease CVD mortality by 30%
- increase the overall life expectancy by 3 years

According to the nine guidelines a **MULTIDISCIPLINARY TEAM** should be used to manage overweight and obesity as a long-term, chronic disease

LIFESTYLE INTERVENTIONS

Intensive lifestyle and behavioural interventions \rightarrow

7–10% mean weight loss over 52 weeks in clinical trials

• INCREASED PHYSICAL ACTIVITY:

should be individualized to patients' capabilities and preferences The **American College of Sports Medicine (ACSM)** recommended that individuals need to exercise :

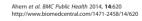
- 150–250 min/week, prevent weight gain
- 150–250 min/week, achieve weight loss
- 200–300 min/week, maintain weight loss,
- BEHAVIOURAL INTERVENTIONS :
- motivational interviewing
- stimulus control
- cognitive restructuring
- selfmonitoring essential part

LIFESTYLE INTERVENTIONS

• LOW-CALORIE BALANCED DIET:

dietary interventions should be individualized and based on personal and cultural preferences

The recommended therapeutic goal \rightarrow


weight loss of 0.2 -1.0 kg per week and a 5-10% reduction in body weight

- Weight-loss programme referrals for adults in primary care (WRAP)
- The Diabetes Remission Clinical Trial (DiRECT)

strict weight management program for 12 month \rightarrow 825–853 kcal/day formula diet for 3–5 months,

- weight loss of **15 kg** or more in 24%
- diabetes remission in 46%
- in the control group no patient achieved a weight loss of>15 kg, (only 4% of patients achieved diabetes remission)

PALAZZO DEL CASINO/HDC

STUDY PROTOCOL

Open Access

Weight loss referrals for adults in primary care (WRAP): protocol for a multi-centre randomised controlled trial comparing the clinical and cost-effectiveness of primary care referral to a commercial weight loss provider for 12 weeks, referral for 52 weeks, and a brief self-help intervention [ISRCTN82857232]

Amy L Ahern^{1*}, Paul N Aveyard², Jason CG Halford³, Adrian Mander⁴, Lynne Cresswell^{4,5}, Simon R Cohn^{6,9}, Marc Suhrcke^{7,10}, Tim Marsh⁸, Ann M Thomson¹ and Susan A Jebb^{1,2}

STUDY PROTOCOL

(CrossMark

The Diabetes Remission Clinical Trial (DiRECT): protocol for a cluster randomised trial

Wilma S. Leslie^{1*}, Ian Ford¹, Naveed Sattar¹, Kieren G. Hollingsworth², Ashley Adamson², Falko F. Sniehotta², Louise McCombie³, Naomi Brosnahan¹, Hazel Ross³, John C. Mathers², Carl Peters², George Thom¹, Alison Barnes², Sharon Kean¹, Yvonne McIlvenna¹, Angela Rodrigues², Lucia Rehackova², Sviatlana Zhyzhneuskaya², Roy Taylor² and Mike E. J. Lean¹

PHARMACOLOGICAL TREATMENT

The use of **anti-obesity medications** in conjunction with **lifestyle interventions** is indicated for

- PEOPLE WITH OBESITY (BMI ≥30 KG/M²)
- OVERWEIGHT (BMI ≥27 KG/M²) with at least ONE WEIGHT-RELATED HEALTH CONDITION

FDA-Approved Weight Loss Drugs 1999 2012 2007 Xenical Qsymia Alli (phentermine-topiramate) (orlistat) (orlistat) 2014 2014 Saxenda Contrave (bupropion-naltrexone) (liraglutide) 2020 2023 2021 Imcivree Zepbound Wegovy (setmelanotide) (tirzepatide) (semaglutide) verywell health

Anti-obesity medications approved for long-term weight management :

- Orlistat*→ inactivates gastric and pancreatic lipase, leading to the excretion of up to 30–35% of ingested fat
- Phentermine
- Naltrexone-bupropiont
- Liraglutide 3.0 mg
- Semaglutide 2.4 mg
- Tirzepatide

- regulate food intake,
- to reduce hunger,
- promote satiation,
- reduce food reward

effects on diverse neurotransmitters in CNS pathways

SJ.C.OB

PALAZZO DEL CASINO/HDC

(including the hypothalamic melanocortin system and mesolimbic reward system)

LIRAGLUTIDE AND SEMAGLUTIDE

GLP-1 analogue.

Initially prescribed for the management of type 2 diabetes, both central and peripheral action:

- inhibition of glucagon secretion,
- increase in insulin secretion → in a glucose- dependent manner → reducing the risk of associated hypoglycaemia
- decreases the rate of gastric emptying.
- **promote satiety**, acting on receptors within the arcuate nucleus in the hypothalamus and nucleus of the solitary tract

LIRAGLUTIDE

- similar to the native GLP-1 sequence \rightarrow few chemical modifications to *improve bioavailability* and *extend the half-life*, (replacing lysine at position 34 with arginine and adding a C16 fatty acid at the ε -amino group of lysine at position 26.9)
- The once-daily 3.0 mg liraglutide has been approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of obesity.

SEMAGLUTIDE

- analogue of liraglutide with a substitution of alanine with an aminoisobutyric acid (Aib) at the 2nd position in the N-terminal. The C16 fatty acid is also exchanged for C18 fatty acid and linked by a synthetic spacer.
- The half-life of semaglutide extends to 160 h, supporting **once-weekly administration**.
- Semaglutide once-weekly 2.4 mg was approved by the FDA in June 2021 for the treatment of overweight/obese individuals.

open Access Full Text Article

REVIEW

Efficacy and Safety of Liraglutide and Semaglutide on Weight Loss in People with Obesity or Overweight: A Systematic Review

Zeyu Xie®, Sensen Yang®, Weishang Deng®, Jinjian Li, Jisheng Chen®

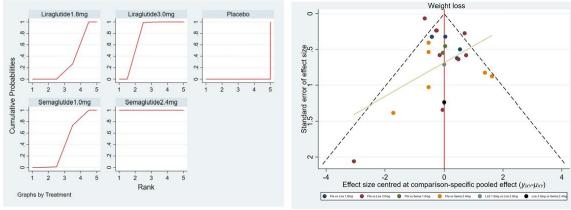
Weight Loss

- semaglutide 2.4mg (MD=-12.47kg, 95% CI [-13.25, -11.69]), best weight loss effect semaglutide 2.4mg (OR = 1.29, 95% CI [0.97, 1.71], P > 0.05)
- liraglutide 3.0mg (MD=-5.24kg, 95% CI [-5.82, -4.67]),
- semaglutide 1.0mg (MD=-3.74kg, 95% CI [-4.87, -2.61]),
- liraglutide 1.8mg (MD=-3.29kg, 95%Cl [-4.04, -2.53]).

Decreased HbA1c (%)

- semaglutide 2.4mg (MD= -1.48%, 95% CI [-1.93, -1.04]), best-decreased HbA1c (%)
- semaglutide 1.0mg (MD=-1.36%, 95% CI [-1.72, -1.01]),
- liraglutide 1.8mg (MD= -1.23%, 95%Cl [-1.66, -0.80]),

There is no significant difference in the comparison between semaglutide 2.4mg and semaglutide 1.0mg and liraglutide 1.8mg


Total Adverse Events

- semaglutide 2.4 mg (OR = 2.36, 95%Cl [1.84, 3.03], P < 0.05),
- Liraglutide 3.0 mg (OR = 2.35, 95%Cl [1.82, 3.02], P < 0.05),

semaglutide 1.0 mg had the lowest incidence of total adverse events, semaglutide 2.4 mg had the highest incidence of total adverse events

Serious Adverse Events

liraglutide 3.0mg (OR = 1.47, 95%Cl [1.07, 2.02], P < 0.05). Liraglutide 1.8mg (OR = 1.67, 95%Cl [0.68,4.09], P > 0.05), semaglutide 2.4mg (OR = 1.29, 95%Cl [0.97,1.71], P > 0.05) semaglutide 1.0mg (OR = 0.87, 95%Cl [0.54,1.39], P > 0.05) NO significant difference

Effect of semaglutide and liraglutide in individuals with obesity or overweight without diabetes: a systematic review

You Deng 🝺, Andrew Park, Lin Zhu, Wen Xie 🝺 and Calvin Q. Pan

the liraglutide 3.0 mg daily treated group,

- > 5% weight loss → 48.2% to 76.1% vs 1.8% to 44.0% in CG.
- ≥ 10% → 20% to 46% vs 1.8% to 26%
- ≥ 15% → 8.4% to 28% vs 1.8% to 12%

In semaglutide treated groups,

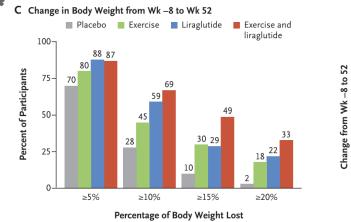
- > 5% → 86.4% to 88.7% vs 31.5% to 47.6%,
- >10% → 69.1% to 79.0% vs 12.0% to 27.0%,
- > **15%** → 50.5% to **63.7%** vs 4.9% to 13.2%

All populations treated with liraglutide or semaglutide were associated with **effective**, **sustained**, **clinically relevant weight loss** regardless of the study design and duration

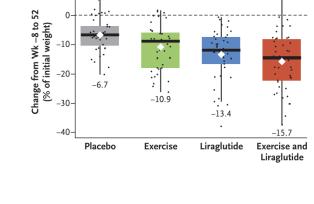
Authors	≥5% weight loss,%	≥10% weight loss,%	≥15% weight loss,%
Liraglutide, 3.0mg, QD			
Pi-Sunyer et al. ¹³	63.2 (1131/1789) vs 27.1 (217/801)	33.1 (592/1789) vs 10.6 (85/801)	14.4 (258/1789) vs 3.5 (28/801)
Astrup et al. ¹⁶	76.1 (62/82) vs 29.6 (23/79)	28.3 (23/82) vs 2.0 (2/79)	NR
Blackman <i>et al.</i> ²²	48.2 (68/142) vs 20.0 (27/134)	24.7 (35/142) vs 1.8 (2/134)	8.4 (12/142) vs 1.8 (2/134)
Wadden <i>et al.</i> ¹⁹	70.0 (32/45) vs 44.0 (20/46)	46.0 (21/45) vs 26.0 (12/46)	28.0 (13/45) vs 12.0 (6/46)
Astrup et al.20	73.0 (55/75) vs 28.0 (21/74)	37.0 (28/75) vs 10.0 (16/74)	NR
Wadden <i>et al.</i> ²¹	50.5 (80/159) vs 1.8 (3/146)	NR	NR
Ferrari <i>et al.</i> 27	68.3 (49/72) vs NR	20.0 (14/72) vs NR	10.0 (7/72) vs NR
Gorgojo-Martínez et al.29	64.7 (65/100) vs 27.4 (110/400)	20.0 (20/100) vs 11.7 (47/400)	NR
O'Neil <i>et al.</i> ¹⁵	66.0 (57/86) vs 23.0 (24/103)	34.0 (29/86) vs 10.0 (10/103)	15.0 (13/86) vs 5.0 (5/103)
Liraglutide 2.4, 1.8, 1.2, 0.6 n	ng, QD		
Astrup et al. ¹⁶	60.8 (52/73), 53.3 (45/74), 52.1 (44/85), NR vs 29.6 (23/79)	22.8 (17/73), 18.9 (14/74), 7.4 (6/85), NR vs 2.0 (2/79)	NR
Astrup et al. ²⁰	53.0 (35/66), 51.0 (36/70), 43.0 (34/78), NR vs 28.0 (21/74)	27.0 (18/66), 26.0 (18/70), 17.0 (13/78), NR vs 10.0 (7/74)	NR
Chou and Chuang ²⁸	NR, NR, 44.4 (8/18), 32.1 (9/28) vs NR	NR, NR, 22.2 (4/18), 14.8 (4/28) vs NR	NR
Semaglutide, 2.4mg, QW			
Wilding et al. ¹⁴	86.4 (1047/1212) vs 31.5 (182/577)	69.1 (838/1212) vs 12.0 (69/577)	50.5 (612/1212) vs 4.9 (28/577)
Wadden <i>et al.</i> ¹⁷	86.6 (294/339) vs 47.6 (79/166)	75.3 (255/339) vs 27.0 (45/166)	55.8 (189/339) vs 13.2 (22/166)
Rubino <i>et al.</i> ¹⁸	88.7 (447/504) vs 47.6 (113/237)	79.0 (398/504) vs 20.4 (48/237)	63.7 (321/504) vs 9.2 (22/237)

ORIGINAL ARTICLE

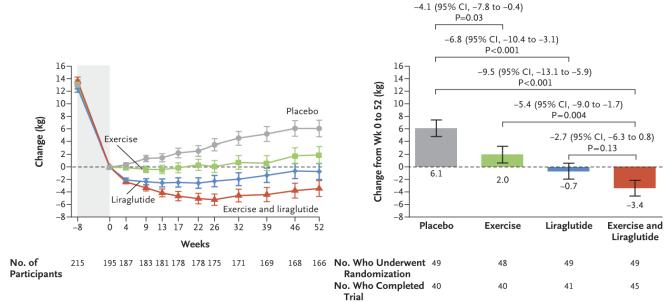
f 💥 in 🖾 ¥ Healthy Weight Loss Maintenance with Exercise, Liraglutide, or Both Combined


Authors: Julie R. Lundgren, M.D., Ph.D., Charlotte Janus, Ph.D. 💿 , Simon B.K. Jensen, M.Sc., Christian R. Juhl, M.D., Lisa M. Olsen, M.Sc., Rasmus M. Christensen, B.Sc.Med. 💿 , Maria S. Svane, M.D., Ph.D., 😝 , and Signe S. Torekov, Author Info & Affiliations Ph.D. 回

Published May 5, 2021 | N Engl | Med 2021;384:1719-1730 | DOI: 10.1056/NEIMoa2028198 | VOL. 384 NO. 18 Copyright © 2021


Randomized clinical trial exercise combined with liraglutide \rightarrow twice as much as either treatment alone in reducing the body weight and body-fat percentage.

It was also associated with the improvements:


- insulin sensitivity,
- cardiorespiratory fitness,
- maintaining a good mood

A Change in Body Weight

10-

TIRZEPATIDE

In May 2022, the hypoglycemic drug tirzepatide (trade name: Mounjaro) developed by Eli Lilly and Company was approved by the FDA for marketing. **First dual agonist of glucose dependent insulinotropic peptide (GIP) and GLP-1 receptor**, which is used as a subcutaneous injection once a week

GIP

- inhibits gastric secretion activity,
- stimulates insulin secretion, has insulin-like effects on adipose tissue,
- inhibits fat lysis,
- promotes fat generation

Diabetes Ther https://doi.org/10.1007/s13300-020-00981-0

REVIEW

The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials

Thinzar Min 💿 · Stephen C. Bain

GLP-1

- stimulate insulin secretion
- inhibit the release of glucagon.
- slow down gastric emptying
- induce a feeling of fullness

Both GIP and GLP-1 belong to the insulin stimulating hormone \rightarrow stimulating hormones may be caused by nutrients in the gut, microbial factors, and neuroendocrine stimulation. GLP-1 inhibits glucagon while GIP increases, which may produce a **good balance for avoiding hypoglycemia**

GIP and GLP-1 lead to **increased insulin secretion** and **peripheral insulin sensitivity**, while **slowing the neuroregulation of gastric emptying** and gastrointestinal motility

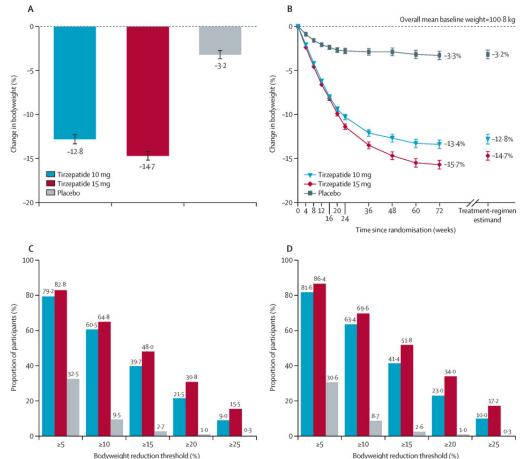
Clinical Trial > Lancet. 2023 Aug 19;402(10402):613-626. doi: 10.1016/S0140-6736(23)01200-X. Epub 2023 Jun 26.

Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebocontrolled, phase 3 trial

W Timothy Garvey ¹, Juan P Frias ², Ania M Jastreboff ³, Carel W le Roux ⁴, Naveed Sattar ⁵, Diego Aizenberg ⁶, Huzhang Mao ⁷, Shuyu Zhang ⁷, Nadia N Ahmad ⁷, Mathijs C Bunck ⁷, Imane Benabbad ⁷, Xiaotian M Zhang ⁷; SURMOUNT-2 investigators

BMI 27 kg/m2 or higher and **type 2 diabetes** treated with tirzepatide for 72 weeks 938 participants \rightarrow tirzepatide 10 mg (n=312), tirzepatide 15 mg (n=311), or placebo

Tirzepatide (or matching placebo) was initiated at 2.5 mg once weekly and increased by 2.5 mg every 4 weeks until the target dose was reached


At week 72 bodyweight was

- -12.8% (SE 0.6) or -12.9 kg (-28.4 lbs) with tirzepatide 10 mg,
- -14.7% (SE 0.5) or -14.8 kg (-32.6 lbs) with tirzepatide 15 mg, →
 >79-83% reaching a weight reduction of 5% or more
- -3.2% (SE 0.5) or -3.2 kg (-7.0 lbs) with placebo

On tirzepatide 15 mg, bodyweight reductions at week 72

- > 65%, → 10%
- 48%, → 15%
- 31% → 20%

Improvements in **fasting serum glucose**, **fasting insulin**, and **seven-point SMBG profiles** were also greater among participants treated with tirzepatide compared with placebo

gastrointestinal disorders (diarrhoea, nausea, and vomiting)

Tirzepatide as a novel effective and safe strategy for treating obesity: a systematic review and metaanalysis of randomized controlled trials

Wenting Cai $^{1\ 2}$, Ruobin Zhang $^{1\ 2}$, Yao Yao 2 , Qiuhui Wu 2 , Jinping Zhang 2

Affiliations + expand PMID: 38356942 PMCID: PMC10864442 DOI: 10.3389/fpubh.2024.1277113

Tirzepatide group had **lower BMI than the control group** [MD = -1.71, 95% CI (-2.46, -0.95), p < 0.00001].

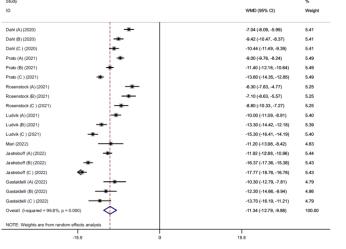
The tirzepatide group has a more outstanding advantage in **weight loss \geq15%** compared to weight loss \geq 5 and 10%.

Compared with placebo, the efficacy rate of tirzepatide in **weight loss≥20%, 25% was much higher than that of placebo** [RR = 30.43, 95% CI (19.56, 47.33), p < 0.00

The results showed that the waist circumference of the tirzepatide group was significantly lower

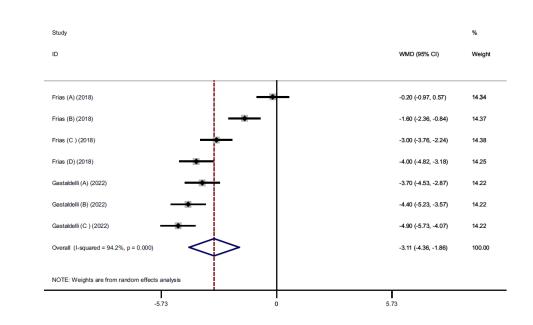
	Tirz	epatid	le	GI	P-1 R/	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD.	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
18.1.1 5mg									
Frias, 2018	-1.7	2	55	-1	1.98	54	16.5%	-0.70 [-1.45, 0.05]	
Frías, 2021	-2.9	5.15	461	-2.3	5.15	462	17.0%	-0.60 [-1.26, 0.06]	
Subtotal (95% CI)			516			516	33.5%	-0.64 [-1.14, -0.15]	•
Heterogeneity: Tau ² =	= 0.00; Cl	hi² = 0.	.04, df=	= 1 (P =	0.84);	$ ^{2} = 0\%$			
Test for overall effect:	Z - 2.54	(P - 0	01)						
18.1.2 10 mg									
Frias, 2018	-3.1	2	51	-1	1.98	54	16.4%	-2.10 [-2.86, -1.34]	_ _
Frías, 2021		5.14		-2.3			17.0%	-1.50 [-2.16, -0.84]	
Subtotal (95% CI)	0.0	0.11	510	2.0	0.10	516		-1.77 [-2.35, -1.18]	•
Heterogeneity: Tau ² =	= 0.05° CI	hi ² = 1		= 1 (P =	0.24);				
- /	0.001 01								
Test for overall effect:	Z = 5.93	(P < 0	00001)					
	: Z = 5.93	(P < (00001)					
18.1.3 15 mg				-			40.00		
18.1.3 15 mg Frias, 2018	-4.1	2.26	53	-1	1.98		16.0%		
18.1.3 15 mg Frias, 2018 Frías, 2021	-4.1		53 464	-		462	17.0%	-2.30 [-2.96, -1.64]	
18.1.3 15 mg Frias, 2018 Frías, 2021 Subtotal (95% CI)	-4.1 -4.6	2.26 5.17	53 464 517	-1 -2.3	5.15	462 516	17.0% 33.1%	-2.30 [-2.96, -1.64]	
18.1.3 15 mg Frias, 2018 Frías, 2021 Subtotal (95% CI) Heterogeneity: Tau ² =	-4.1 -4.6 = 0.18; Cl	2.26 5.17 hi² = 2	53 464 517 .25, df =	-1 -2.3 : 1 (P =	5.15	462 516	17.0% 33.1%	-2.30 [-2.96, -1.64]	
18.1.3 15 mg Frias, 2018 Frías, 2021 Subtotal (95% CI)	-4.1 -4.6 = 0.18; Cl	2.26 5.17 hi² = 2	53 464 517 .25, df =	-1 -2.3 : 1 (P =	5.15	462 516	17.0% 33.1%	-2.30 [-2.96, -1.64]	
18.1.3 15 mg Frias, 2018 Frías, 2021 Subtotal (95% CI) Heterogeneity: Tau ² =	-4.1 -4.6 = 0.18; Cl	2.26 5.17 hi² = 2	53 464 517 .25, df =	-1 -2.3 : 1 (P =	5.15	462 516 I ² = 569	17.0% 33.1%	-2.30 [-2.96, -1.64]	
18.1.3 15 mg Frias, 2018 Frías, 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	-4.1 -4.6 = 0.18; Cl : Z = 6.69	2.26 5.17 hi ^a = 2. I (P < 0	53 464 517 .25, df= 000001 1543	-1 -2.3 = 1 (P =)	5.15 0.13);	462 516 ² = 569 1548	17.0% 33.1% % 100.0%	-2.30 [-2.96, -1.64] -2.67 [-3.45, -1.89]	
18.1.3 15 mg Frias, 2018 Frías, 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	-4.1 -4.6 : Z = 6.69 = 0.75; Cl	2.26 5.17 hi ² = 2. I (P < (hi ² = 3	53 464 517 .25, df= 00001 1543 3.45, df	-1 -2.3 = 1 (P =) = 5 (P	5.15 0.13);	462 516 ² = 569 1548	17.0% 33.1% % 100.0%	-2.30 [-2.96, -1.64] -2.67 [-3.45, -1.89]	-4 -2 0 2 4 Favours [GLP-1 RA]

The main symptoms included nausea, diarrhea, vomiting, and decreased appetite


The effects of subcutaneous Tirzepatide on obesity and overweight: a systematic review and metaregression analysis of randomized controlled trials

Pejman Rohani ¹, Nasser Malekpour Alamdari ², Seyedeh Elaheh Bagheri ³, Azita Hekmatdoost ⁴, Mohammad Hassan Sohouli ^{1 5}

Affiliations + expand PMID: 37621649 PMCID: PMC10446893 DOI: 10.3389/fendo.2023.1230206


- body weight: -11.34 kg, 95% (CI): -12.79 to -9.88, P< 0.001,
- BMI WMD: -3.11 kg/m2, 95% CI: -4.36 to -1.86, P< 0.001,
- waist circumference WMD: -7.24 cm, 95% CI -10.12 to -4.36, P< 0.001)

were significantly reduced after subcutaneous Tirzepatide

Changes in weight loss following subcutaneous Tirzepatide at a dose of:

- 15 mg (WMD: -13.02 kg, 95% CI: -15.36 to -10.69, I2 = 96.1%) were higher compared to other doses
- 10 mg (WMD: -11.66 kg, 95% CI: -14.16 to -9.16, I2 = 96.5%),
- 5 mg (WMD: -9.08 kg, 95% CI: -10.75 to -7.42, I2 = 92.2%)).

FIGURE 4

Forest plot of randomized controlled trials investigating the effects of Tirzepatide on body mass index (BMI) (kg/m²).

FIGURE 2 Forest plot of randomized controlled trials investigating the effects of Tirzepatide on weight (kg).

Review Article

Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists on Body Weight and Cardiometabolic Parameters in Individuals With Obesity and Without Diabetes: A Systematic Review and Meta-Analysis

Huzaifa Ul Haq Ansari, MBBS ^{1, *}, Shurjeel Uddin Qazi, MBBS ¹, Faiza Sajid, PhD ², Zahabia Altaf, MBBS ¹, Shamas Ghazanfar, MBBS ¹, Naveen Naveed, MBBS ³, Amna Shakil Ashfaq, MBBS ¹, Abdul Hannan Siddiqui, MBBS ¹, Hamza Iqbal, MBBS ¹, Sana Qazi, MBBS ¹

Weight Loss

among obese individuals without diabetes.

Tirzepatide

most substantial weight reduction at **17%** (95% CI, 19.33 to 6.27; P<.01).

Semaglutide

12% weight loss (95%Cl, 13.56 to 1.60; P <.01; I2 ¼ 82%), **Liraglutide**

5% weight loss of (95% Cl, 6.36 to .85; P <.01; I2 ¼ 99%)

H.U.H. Ansari, S.U. Qazi, F. Sajid et al.

Study or Subgroup 1.1.1 Semaglutide D'Neil 2018 Rubino 2021	Mean	60								
D'Neil 2018		30	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
								a filling a second of		
Publing 2021	-15.15	0.92	102	-2.48	0.82	136	8.5%	-12.67 [-12.90, -12.44]	2018	•
100110 2021	-7.9	8.1	535	6.9	7.7	268	8.4%	-14.80 [-15.95, -13.65]	2021	-
Vadden 2021	-16	9.6	407	-5.7	7.6	204	6.3%	-10.30 [-11.70, -8.90]	2021	-
Wilding 2021	-14.9	10.1	1212	-2.4	6.5	499	6.4%	-12.50 [-13.31, -11.69]	2021	-
Rubino 2022	-15.8	10.5	126	-1.6	8.6	85	5.9%	-14.20 [-16.79, -11.61]	2022	
Kadowaki 2022	-13.2	8.6	199	-2.1	7.8	101	6.2%	-11.10 [-13.03, -9.17]	2022	
Subtotal (95% CI)			2581			1293	37.7%	-12.58 [-13.56, -11.60]		•
Heterogeneity: Tau ² =	1.03; Ch	17=28	3.26, df	= 5 (P <	0.0001)	F= 82	%			
Fest for overall effect.	Z=25.2	1 (P <	0.0000	1)						
1.1.2 Liraglutide										
Astrup 2009	-7.2	11.5	93	-2.8	4.4894	98	6.0%	-4.40 [-6.90, -1.90]	2009	
Vadden 2013	-6.2	7.3	207	-0.2	7	206	6.3%	-6.00 [-7.38, -4.62]	2013	-
Pi-Sunyer 2015	-8	6.7	2437	-2.6	5.7	1225	6.5%	-5.40 [-5.82, -4.98]	2015	-
Blackman 2016	-5.7	0.5	180	-1.9	0.4	179	6.5%	-3.80 [-3.89, -3.71]	2016	
D'Neil 2018	-8.47	0.93	103	-2.48	0.82	136	6.5%	-5.99 [-6.22, -5.76]	2018	
Rubino 2022	-6.4	7.7		-1.6	8.6	85	6.1%	-4.80 [-7.07, -2.53]	2022	
Subtotal (95% CI)			3147			1929	37.7%	-5.11 [-6.36, -3.85]		•
Heterogeneity: Tau [®] = Fest for overall effect					< 0.0000	1); ["=	99%			
1.1.3 Tirzepatide										
lastreboff 2022	-20.9	12.1	630	-3.1	15.5	643	6.3%	-17.80 [-19.33, -16.27]	2022	-
Subtotal (95% CI)			630			643		-17.80 [-19.33, -16.27]		•
Heterogeneity: Not ap	plicable									
Fest for overall effect.		6 (P <	0.0000	1)						
1.1.4 Exenatide										
Rosenstock 2010	-5.1	4.27	73	-1.6	4.44	79	6.3%	-3.50 [-4.88, -2.12]	2010	
Dushay 2012	-2.49	4.9	41	0.43	4.2	41	6.2%	-2.92 [-4.90, -0.94]	2012	
Subtotal (95% CI)			114			120	12.5%	-3.31 [-4.44, -2.17]		•
Heterogeneity: Tau ² =	0.00; Ch	ni ² = 0.	22, df=	1 (P = 1	0.64); I [#] =	0%				
Fest for overall effect	Z= 5.72	(P < 0	.00001)						
1.1.5 Orforglipron										
Wharton 2023	-12.5	7.4	53	-2.3	7.03	50	5.9%	-10.20 [-12.99, -7.41]	2023	
Subtotal (95% CI)			53	0.000		50	5.9%	-10.20 [-12.99, -7.41]		•
Heterogeneity: Not ap	plicable									
Fest for overall effect		(P < 0	.00001)						
fotal (95% CI)			6525			4035	100.0%	-8.77 [-10.98, -6.56]		•
Heterogeneity: Tau* =	19.68 0	hi ^z = P) df = 14	5 (P < 0.0					
Test for overall effect										-20 -10 0 10 Favours [GLP-1 RAs] Favours [Placebo]

Endocrine Practice 30 (2024) 160-171

INTRAGRASTIC BALLOON

The **IGB** is a **temporary restrictive technique**

a balloon is inflated with air or fluid and endoscopically placed in the patient's stomach for up to 3–6 months.

Several studies have demonstrated substantial weight-loss outcomes \rightarrow satisfactory performance profile for incorporation into clinical practice guidelines

Saline soution is injected to fill the ballion Uninflated balloon the is removements balance is files

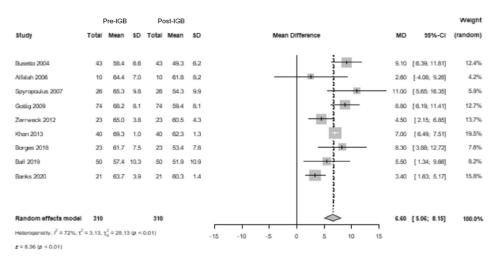
Piggerwrit of Intragaetric balloon.

Weight reduction from IGB appears to be temporary and unsustainable in the long run

The total pooled *complication rate* was 8.13% (95% CI: 4.04–13.17%)

- mild (grades I–II) complications was 0.65% (95% CI: 0.00–2.71%)
- severe complications (grades III–V) was 5.45% (95% CI:1.94– 10.12%)

PALAZZO DEL CASINO/HDC Obesity Surgery (2022) 32:489-502 https://doi.org/10.1007/s11695-021-05772-5


REVIEW

Intragastric Balloon as Bridging Therapy Prior to Bariatric Surgery for Patients with Severe Obesity (BMI \ge 50 kg/m²): a Systematic Review and Meta-analysis

Jing Hong Loo¹ · Yao Hui Lim¹ · Hwee Ling Seah¹ · Andrew Zhi Quan Chong² · Kon Voi Tay^{2,3}

Received: 17 July 2021 / Revised: 15 October 2021 / Accepted: 3 November 2021 / Published online: 17 November 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

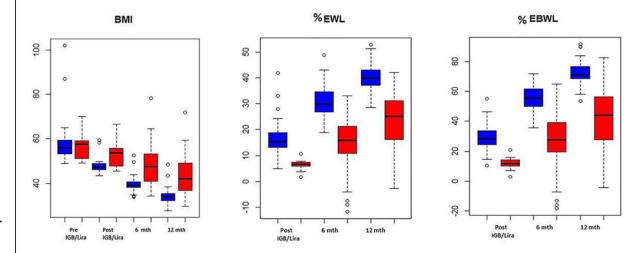
Bridging with IGB therapy achieved a weighted pooled BMI reduction of 6.60 kg/m² (MD=6.60, 95% CI: 5.06– 8.15; I2=72%) prior to bariatric surgery

ig. 1 Pooled change in body mass index (BMI) before and after intragastric gastric (IGB)

Check fo

Efficacy of Intragastric Balloon versus Liraglutide as Bridge to Surgery in Super-Obese Patients

Gennaro Martines ¹, Agnese Dezi ¹, Carlo Giove ¹, Valerio Lantone ¹, Maria Tersa Rotelli ¹, Arcangelo Picciariello ¹, Giovanni Tomasicchio ¹


Affiliations + expand PMID: 37579738 PMCID: PMC10601677 DOI: 10.1159/000531459

The group treated with IGB reported:

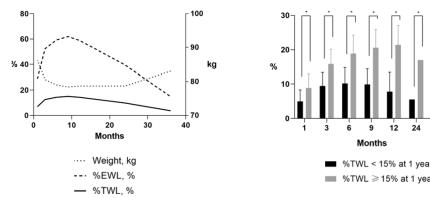
- a significant difference in weight (125 kg, IQR 119–130 vs.
 136.5 kg, IQR 125.5–154.5; p < 0.05)
- BMI (47.24 kg/m², IQR 46.2–48.9 vs. 53.6 kg/m², IQR47.7–55.8; p < 0.391)

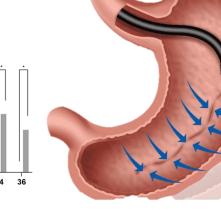
compared to liraglutide group.

```
The median %EWL (15.5, IQR 13–18.7 vs. 6.71, IQR 5.8–7.4;
p < 0.05)
median %EBWL (28.5, IQR 24.8–33.07 vs. 11.8, IQR 10.3–14.3;
p < 0.05)
were significantly higher in IGB group when compared to
liraglutide group
```


Fig. 2. Relationship between intragastric balloon (IGB) (with blue) and liraglutide (Lira) (with red) management and body mass index (BMI), percent excess weight loss (%EWL), and percent excess body weight loss (%EBWL) at 6 and 12 months.

There were **no differences recorded** between the two groups concerning postoperative complications according to Clavien-Dindo grade

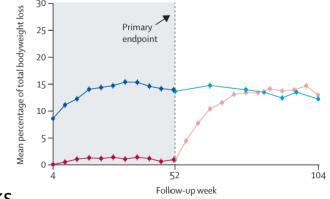

ENDOSCOPIC GASTROPLASTIES


Patients with class I and II obesity, those with class III obesity who are not suitable candidates for metabolic bariatric surgery

From Early to Mid-Term Results of Endoscopic Sleeve Gastroplasty: A Retrospective Analysis of a Bariatric Center

Sébastien Frey^{1,2} · Eric Sejor¹ · Pierre-Alain Cougard³ · Dorith Benamran^{1,2} · Hugues Sebbag³

% TWL → 14.37% at 12 months
%TWL ≥ 10%, → 41.2% of patients at 3 years.


learning curve \rightarrow 26 procedures.

 Randomized Controlled Trial
 > Lancet. 2022 Aug 6;400(10350):441-451.

 doi: 10.1016/S0140-6736(22)01280-6. Epub 2022 Jul 28.

Endoscopic sleeve gastroplasty for treatment of class 1 and 2 obesity (MERIT): a prospective, multicentre, randomised trial

- At 52 weeks
- %EWL → 49.2% vs 3.2% (P < 0.0001).
- %TWL → 13.6% vs 0.8% (*P* < 0.0001).
- > 25% EWL → 77% vs 12% (P < 0.0001)
 At 104 weeks → 68%

ESG is more effective at weight loss than lifestyle

ORIGINAL CONTRIBUTIONS

Comparative Effectiveness and Safety Between Endoscopic Sleeve Gastroplasty and Laparoscopic Sleeve Gastrectomy: a Meta-analysis of 6775 Individuals with Obesity

Azizullah Beran¹ · Reem Matar^{2,3} · Veeravich Jaruvongvanich³ · Babusai B. Rapaka³ · Abdullah Alalwan⁴ · Ray Portela⁵ · Omar Ghanem⁵ · Barham K. Abu Dayyeh³

3143 ESG vs 3362 LSG.
ESG vs LSG
6-month %TWL → 7.5% vs 10.4%
12-month %TWL → 7.6% vs 11.3 %

ESG had fewer adverse effects \rightarrow patients with moderate obesity $\frac{Heterogen}{Test for over}$

Laparoscopic sleeve gastrectomy versus endoscopic sleeve gastroplasty: a systematic review and metaanalysis

```
Giuseppe Marincola <sup>1</sup>, Camilla Gallo <sup>2</sup> <sup>3</sup>, Cesare Hassan <sup>4</sup>, Marco Raffaelli <sup>1</sup>,
Guido Costamagna <sup>2</sup> <sup>3</sup>, Vincenzo Bove <sup>2</sup> <sup>3</sup>, Valerio Pontecorvi <sup>2</sup> <sup>3</sup>, Beatrice Orlandini <sup>2</sup> <sup>3</sup>,
Ivo Boškoski <sup>2</sup> <sup>3</sup>
```

Affiliations + expand PMID: 33403240 PMCID: PMC7775813 DOI: 10.1055/a-1300-1085

		ESG		1	SG			Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
Algahtani, 2022	15.1	6.1	2490	18	7.3	2294	16.2%	-2.90 [-3.28, -2.52]		
Carr, 2022	15	6	13	24	6	41	12.9%	-9.00 [-12.74, -5.26]	+	
Fayad, 2019	17.2	5.6	54	23.7	7.6	83	14.8%	-6.50 [-8.71, -4.29]	•	
Fiorillo, 2020	13.4	3.6	23	18.8	4.9	23	14.5%	-5.40 [-7.88, -2.92]	-	
Lopez-Nava, 2020	13.3	7	12	24.4	4.8	12	11.4%	-11.10 [-15.90, -6.30]	-	
Lopez-Nava, 2021	16.8	8.63	199	26.5	6.8	61	15.0%	-9.70 [-11.79, -7.61]	•	
Novikov, 2018	14.4	6.7	91	23.5	6.6	120	15.3%	-9.10 [-10.91, -7.29]	-	
Total (95% CI)			2882			2634	100.0%	-7.48 [-10.44, -4.52]	•	
Heterogeneity: Tau ² :	= 14.06;	Chi ² =	106.99	, df = 6 ((P < 0	00001)	; I ² = 94%)	-100 -50 0 50 1	
Test for overall effect	Z = 4.96	6 (P < (0.0000	1)					Favours LSG Favours ESG	100
		ESG		1	LSG			Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	
Alqahtani, 2022	19.2	7.7	2243	28.9	8.2	2354	81.6%	-9.70 [-10.16, -9.24]		
Carr, 2022	18	11	9	30	8	36	0.8%	-12.00 [-19.65, -4.35]		
Lopez-Nava, 2021	18.6	9.72	199	28.4	7.16	61	8.7%	-9.80 [-12.05, -7.55]	-	
Novikov, 2018	17.6	8.17	91	29.3	8.2	120	8.9%	-11.70 [-13.93, -9.47]	-	
Total (95% CI)			2542			2571	100.0%	-9.90 [-10.59, -9.22]	1	
Heterogeneity: Tau ² =	= 0.10; C	hi² = 3.	29, df=	= 3 (P =	0.35);	I [≈] = 9%	6		-100 -50 0 50 1	100
Test for overall effect	: Z = 28.2	24 (P <	0.0000	11)					Favours LSG Favours ESG	00
		ESG			LSG			Mean Difference	Mean Difference	
Study or Subgroup	Mean		Total	Mean		D Tota	Weigh	t IV, Random, 95% Cl		
Algahtani, 2022	16.2	9.7								
Lopez-Nava, 2021		14.03			8.36					
Total (95% CI)			2641			261	9 100.0%	6 -7.63 [-11.31, -3.94]	•	
Heterogeneity: Tau ² =	6.12; CI	hi² = 6.	56, df =	1 (P = 0).01);	² = 85%	6		-100 -50 0 50	100
Test for overall effect				3					-100 -50 0 50 1 Favours LSG Favours ESG	100

BMI between 30 and 40 kg/m² and follow-up 12 months
ESG vs LSG
%EWL → 62% vs 80%
LSG showed moderate superiority over ESG.

ESG is less invasive and preferred for patients with class I or II obesity

WEIGHT REGAIN

The literature lacks a clear consensus on how to define weight regain, described as:

a regain of 10% to 25% of excess weight or total weight loss recovery from the lowest weight achieved loss.

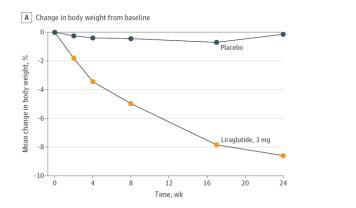
Up to **20%** of bariatric patients experience weight regain or fail to achieve long-term weight loss \rightarrow undermines the long-term benefits of the metabolic surgery

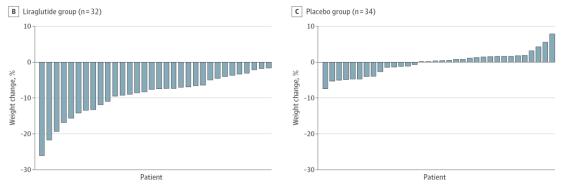
Individuals with poor weight loss or weight regain have:

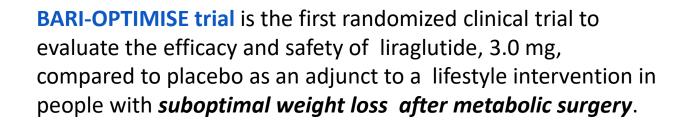
- increased appetite
- unfavorable postoperative gut hormone profile → lower circulating GLP-1 levels.

Treatment with GLP-1 analogs may therefore benefit people with poor post-surgery weight

Revisional surgery is an invasive with even higher complication rate than that of a primary procedure






JAMA Surgery | Original Investigation

Safety and Efficacy of Liraglutide, 3.0 mg, Once Daily vs Placebo in Patients With Poor Weight Loss Following Metabolic Surgery The BARI-OPTIMISE Randomized Clinical Trial

Jessica Mok, BMBS, MPhil; Mariam O. Adeleke, PhD; Adrian Brown, PhD; Cormac G. Magee, MBBChir, MA; Chloe Firman, MRes; Christwishes Makahamadze, MRes; Friedrich C. Jassil, PhD; Parastou Marvasti, PhD; Alisia Carnemolla, PhD; Kalpana Devalia, MBBS, MS; Naim Fakih, MD; Mohamed Elkalaawy, MRCSEd, MS, MD; Andrea Pucci, MD, PhD; Andrew Jenkinson, MBBS, MS; Marco Adamo, MD; Rumana Z. Omar, PhD; Rachel L. Batterham, MBBS, PhD; Janine Makaronidis, MBChB, PhD

liraglutide, 3.0 mg, for 24weeks \rightarrow

- reduction in percentage body weight, -8.03 (95% CI,10.39 to -5.66)
- Body weight (-8.82 [4.94] vs -0.54 [3.32]; P < .001)
- reduced fat mass,
- favorable changes in cardiometabolic risk factors,
- improvement in health-related quality of life.

in the liraglutide group compared to the placebo group lost 5% or more of their body weight (71.9% vs 8.8%)

Obesity Surgery (2024) 34:2844–2853 https://doi.org/10.1007/s11695-024-07384-1

ORIGINAL CONTRIBUTIONS

Liraglutide for the Treatment of Weight Regain After Bariatric Surgery: A Systematic Review and Meta-analysis

 $\label{eq:Francisco Cezar Aquino de Moraes^1 $$$ \cdot Victoria Morbach^2 $$$ \cdot Vitor Kendi Tsuchiya Sano^3 $$ \cdot Vitor Kendi Tsuc$

Liraglutide

- 8-point reduction in (BMI) (MD 8.56 Kg/m²; 95% CI
 3.34 to 13.79; p < 0.01; I2, 97%),
- significant mean 16 kg reduction in total weight (MD 16.03 kg; 95% CI 0.03 to 32.02; p = 0.05)

65% of patients who took liraglutide had a total

- body weight loss (BWL) of over $5\% \rightarrow 65\%$
- > 10% of total BWL \rightarrow 26%,

A) BMI Change from Baseline

	BMI at ba	seline	BMI af	ter Lirag	lutide					Mean Difference		
Study	Mean	SD	Total	Mean	SD	Total	Weight	MD	95% CI	IV, Random, 95% CI		
Di Sacco 2021	44.50	5.10	45	29.60	5.20	45	16.9%	14.90	[12.77; 17.03]			
Horber 2021	45.00	8.00	34	26.40	3.50	34	16.5%	18.60	[15.66; 21.54]	-		
Muratori 2018	36.30	9.30	20	31.10	4.40	20	15.4%	5.20	[0.69; 9.71]			
Muratori 2022	34.20	4.80	62	28.04	3.60	62	17.1%	6.16	[4.67; 7.65]			
Vinciguerra 2023	38.30	5.50	59	35.10	5.60	59	16.9%	3.20	[1.20; 5.20]			
Vinciguerra 2024	37.60	5.30	119	34.19	5.10	119	17.2%	3.41	[2.09; 4.73]	-		
Total (95% CI)			339			339	100.0%	8.56	[3.34; 13.79]	-		
Heterogeneity: Tau				df = 5 (P <	< 0.01); l ²	² = 97%						
Test for overall effe	ct: Z = 3.21	(P = 0.0)	001)							-20 -10 0 10 2		
										Favors baseline Favors Liraglu		

B) Weight Change

v	Veight at b	aseline	Weight a	after Lira	glutide					Mean Difference
Study	Mean	SD	Total	Mean	SD	Total	Weight	MD	95% CI	IV, Random, 95% CI
Horber 2021	120.00	19.00	34	72.00	9.00	34	20.4%	48.00	[40.93; 55.07]	
Jamal 2023	96.12	29.26	57	90.19	26.82	57	19.5%	5.93	[-4.37; 16.23]	-
Pajacki 2013	100.90	18.30	15	93.50	17.40	15	18.7%	7.40	[-5.38; 20.18]	
Vinciguerra 2023	101.80	17.90	59	93.30	17.60	59	20.5%	8.50	[2.09; 14.91]	
Vinciguerra 2024	100.90	17.20	119	91.52	16.40	119	20.9%	9.38	[5.11; 13.65]	
Total (95% CI)			284			284	100.0%	16.03	[0.03; 32.02]	-
Heterogeneity: Tau	² = 313.7440	0; $Chi^2 =$	98.59, df =	= 4 (P < 0.	$(01); I^2 = 9$	96%				
Test for overall effe	ct: Z = 1.96	(P = 0.05	i0)							-40 -20 0 20 40
										Favors baseline Favors Liraglutid

FIFSC

Check for

ORIGINAL CONTRIBUTIONS

Semaglutide and Tirzepatide for the Management of Weight Recurrence After Sleeve Gastrectomy: A Retrospective Cohort Study

Mohammad Jamal^{1,2,3,4} Mohsen Alhashemi^{3,4} Carol Dsouza⁴ Sara Al-hassani⁴ Wafa Qasem^{2,5} Sulaiman Almazeedi³ Salman Al-Sabah³

Post-treatment weight:

Semaglutide treatment group,

- at 3 months → 84.9 (19.3) kg
- at 6 months → 81.0 (19.1) kg

from 90.1 (19.4) kg,

corresponding to a clinically significant mean weight loss from baseline

- to 3 months of 6.0 (3.6)%
- to 6 months of 10.3 (5.9)%

mild adverse events30.0% with semaglutide34.0% with tirzepatide,

Tirzepatide treatment group,

- at 3 months → 91.2 (27.3) kg
- at 6 months → 87.6 (28.3) kg

from 100.2 (28.5) kg,

corresponding to a clinically significant mean weight loss from baseline

- to 3 months of 9.3 (4.3)%
- to 6 months of 15.5 (6.3)%

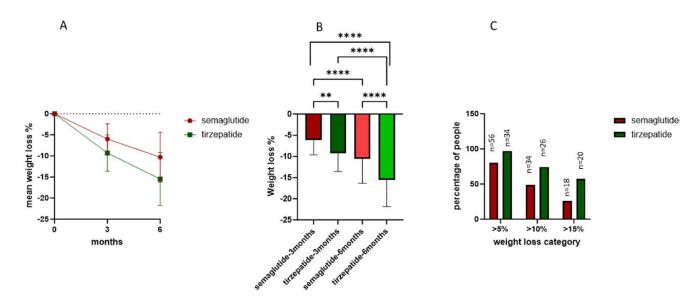
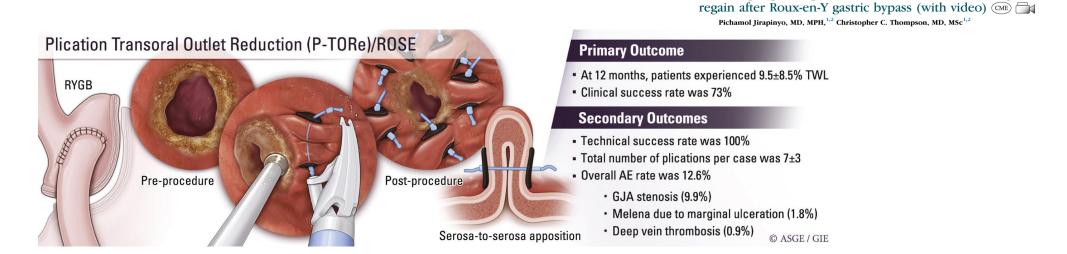



Fig. 1 Weight loss percentage. A Weight loss over time following adjunct treatment with semaglutide and tirzepatide, B comparison of weight loss by treatment, and C percentage of people who achieved weight loss at 6 months of at least $\geq 5\%$, $\geq 10\%$, and $\geq 15\%$

Tore Transoral Outlet Reduction

endoscopic technique in which the pouch and/or the gastro-jejunal anastomosis is reduced by sutured plications

4.60 [-1.52; 10.72]

5.00[0.00; 10.00]

9.20 [-13.93; 32.33]

4.96 [2.72; 7.20]

Efficacy and safety of revisional treatments for weight regain or insufficient weight loss after Roux-en-Y gastric bypass: A systematic review and meta-analysis

```
Rutger J. Franken<sup>1</sup> | Josephine Franken<sup>1</sup> | Nina R. Sluiter<sup>1</sup> | Ralph de Vries<sup>2</sup> | Sjoerd Euser<sup>3</sup> | Victor E. A. Gerdes<sup>4,5</sup> | Maurits de Brauw<sup>1</sup>
```

PALAZZO DEL CASINO/HDC TORe Eid 2014 Thomspon 2012 Mikami 2009 Random effects model Heterogeneity: /² = 0% [0%; >90%], p = 0.93 Pooled BMI at revision was 37.9 kg/m2 (95% CI, 34.7–41.1),

Endoscopic gastric plication for the treatment of weight

```
%TWL 12 months → 5.0 % (95% CI, 2.7–7.2)
```

%TWL 48 months → **1.8** % (95% CI, 1.8 – 5.4)

+

Complications were reported in five cases (1.9%)

13-14 MAGGIO 2025

Presidente onorario Pietro Forestieri

Presidente del congresso Maurizio De Luca

PALAZZO DEL CASINÒ/UDO DI VENEZIA

Grazie

